Quantifying Quantum Coherence Using Machine Learning Methods

Author:

Zhang Lin1,Chen Liang123ORCID,He Qiliang4,Zhang Yeqi12

Affiliation:

1. School of Mathematics and Physics, North China Electric Power University, Beijing 102206, China

2. Institute of Condensed Matter Physics, North China Electric Power University, Beijing 102206, China

3. Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding 071003, China

4. School of Physics and Electronics, Guizhou Normal University, Guiyang 550001, China

Abstract

Quantum coherence is a crucial resource in numerous quantum processing tasks. The robustness of coherence provides an operational measure of quantum coherence, which can be calculated for various states using semidefinite programming. However, this method depends on convex optimization and can be time-intensive, especially as the dimensionality of the space increases. In this study, we employ machine learning techniques to quantify quantum coherence, focusing on the robustness of coherence. By leveraging artificial neural networks, we developed and trained models for systems with different dimensionalities. Testing on data samples shows that our approach substantially reduces computation time while maintaining strong generalizability.

Funder

NSFC

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Reference51 articles.

1. Colloquium: Quantum coherence as a resource;Streltsov;Rev. Mod. Phys.,2017

2. Quantifying Coherence;Baumgratz;Phys. Rev. Lett.,2014

3. Operational Resource Theory of Coherence;Winter;Phys. Rev. Lett.,2016

4. Generic aspects of the resource theory of quantum coherence;Cunden;Phys. Rev. A,2021

5. Unraveling the role of coherence in the first law of quantum thermodynamics;Bernardo;Phys. Rev. E,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3