Trade-off between bagging and boosting for quantum separability-entanglement classification

Author:

Mohanty Sanuja D.,Patro Ram N.,Biswal Pradyut K.,Pradhan Biswajit,Sazim SkORCID

Abstract

AbstractCertifying whether an arbitrary quantum system is entangled or not, is, in general, an NP-hard problem. Though various necessary and sufficient conditions have already been explored in this regard for lower-dimensional systems, it is hard to extend them to higher dimensions. Recently, an ensemble bagging and convex hull approximation (CHA) approach (together, BCHA) was proposed and it strongly suggests employing a machine learning technique for the separability-entanglement classification problem. However, BCHA does only incorporate the balanced dataset for classification tasks which results in lower average accuracy. In order to solve the data imbalance problem in the present literature, an exploration of the boosting technique has been carried out, and a trade-off between the boosting and bagging-based ensemble classifier is explored for quantum separability problems. For the two-qubit and two-qutrit quantum systems, the pros and cons of the proposed random under-sampling boost CHA (RUSBCHA) for the quantum separability problem are compared with the state-of-the-art CHA and BCHA approaches. As the data are highly unbalanced, performance measures such as overall accuracy, average accuracy, F-measure, and G-mean are evaluated for a fair comparison. The outcomes suggest that RUSBCHA is an alternative to the BCHA approach. Also, for several cases, performance improvements are observed for RUSBCHA since the data are imbalanced.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3