Abstract
Abstract
The n-type doping of Ge is a self-limiting process due to the formation of vacancy-donor complexes (D
n
V with n ⩽ 4) that deactivate the donors. This work unambiguously demonstrates that the dissolution of the dominating P4V clusters in heavily phosphorus-doped Ge epilayers can be achieved by millisecond-flash lamp annealing at about 1050 K. The P4V cluster dissolution increases the carrier concentration by more than three-fold together with a suppression of phosphorus diffusion. Electrochemical capacitance–voltage measurements in conjunction with secondary ion mass spectrometry, positron annihilation lifetime spectroscopy and theoretical calculations enabled us to address and understand a fundamental problem that has hindered so far the full integration of Ge with complementary-metal-oxide-semiconductor technology.
Funder
Bundesministerium für Bildung und Forschung
Helmholtz Energy Materials Characterization Platform
Alexander-von-Humboldt foundation
Subject
General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献