Abstract
Abstract
By carefully analyzing the latest composition-dependent parameters of SiGeSn alloys, we come to realize that this system could provide type-II energy band alignment at direct bandgap condition. The discovery inspires us to explore the mid-infrared interband cascade laser (ICL) in SiGeSn system. Based on the eight-band k ⋅ p model, we theoretically design three schemes of ICL, in which the active region and the carrier injectors are optimized simultaneously. Afterward, the properties of TE-mode optical gain spectrums and differential gain are investigated individually for each scheme. Furthermore, the spontaneous emission spectrums and radiative current density are also calculated. Our theoretical results indicate that the active region composed of double-electron and triple-hole quantum wells has the best gain performance, reaching 660 cm−1 for a single period of the ICL under 7.8 × 1018 cm−3 injected electron density. This work opens up another type of infrared lasers that can be developed from the group-IV system, offering a new pathway to achieving the monolithic integration in Si photonics.
Funder
Ministry of Education, Singapore
National Supercomputing Center of Singapore
National Research Foundation Singapore
Air Force Office of Scientific Research
Subject
General Physics and Astronomy
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献