Investigation of ambient temperature and thermal contact resistance induced self-heating effects in nanosheet FET

Author:

Rathore SunilORCID,Jaisawal Rajeewa KumarORCID,Suryavanshi Preeti,Kondekar Pravin N

Abstract

Abstract Self-heating effect (SHE) is a severe issue in advanced nano-scaled devices such as stacked nanosheet field-effect transistors (NS-FET), which raises the device temperature (T D), that ultimately affects the key electrical characteristics, i.e. threshold voltage (V T), DIBL, subthreshold slope (SS), I OFF, I ON, etc. SHE puts design constraints in the advanced CMOS logic devices and circuits. In this paper, we thoroughly investigated the impact of ambient temperature and interface thermal contact resistance induced-self heating effect in the NS-FET using extensive numerical simulations. The weak electron–phonon coupling, phonon scattering, and the ambient temperature-induced joule energy directly coupled with thermal contact resistance cause the SHE-induced thermal degradation, which increases the device temperature (T D) and affects the device reliability. The baseline NS-FET is well-calibrated with the experimental data and 3D quantum corrected drift-diffusion coupled hydrodynamic and thermodynamic transport models is used in our TCAD framework to estimate the impact of ambient temperature and interface thermal contact resistance on the device performance. Moreover, we also evaluate the SHE-induced performance comparison of NS-FET with conventional FinFET and found that thermal degradation in NS-FET potentially worsen the electrical characteristics. Thus, a detailed TCAD analysis shows that the ambient temperature and interface thermal contact resistances deteriorate the effective thermal resistance (R eff) and device performance metrics.

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3