Single event burnout sensitivity of SiC and Si

Author:

Littlefair Matthew T MORCID,Simdyankin Sergei,Turvey Simon,Groves ChrisORCID,Horsfall Alton B

Abstract

Abstract Exposure to ionizing radiation has the potential to catastrophically modify the operation, and destroy, electronic components in microseconds. The electrification of aircraft necessitates the need to use the most power dense and lowest loss semiconductor devices available, and the increasing supply voltages results in extremely high electric fields within the devices. These conditions create the worst case environment for the Single Event Effect (SEE), the instantaneous alteration in device response after high energy particle interaction, with a destructive form of SEE, the single event burnout (SEB), resulting in total failure of the device with potentially explosive consequences. To enable circuits to operate with these high supply voltages, SiC is rapidly becoming the semiconductor of choice. However, the radiation response of SiC power devices during operation is unknown. Here we show that SiC offers a 60% reduction in cosmic ray sensitivity in comparison to Si devices with an equivalent voltage rating. The data show that Si fails when subjected to a heavy ion impact with Linear Energy Transfer (LET) equivalent to 0.2% of the silver ions commonly used for SEE testing. In total contrast, we show that SiC does not exhibit failure during exposure to any heavy ion LET up to values three times greater than those commonly used in testing at any bias up to 99% of the breakdown voltage. The data show that SiC is a robust material and therefore has the potential to replace Si as the material of choice for high reliability avionic applications, as it far exceeds the performance of Si in cosmic ray environments, facilitating significant advances in the electrification of aircraft to be made in the near future.

Funder

Innovate UK

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3