Abstract
Abstract
This work investigates the innovative design of a 14 nm bulk 3D non-rectangular structure fin field-effect transistor (FinFET). By incorporating a cylindrical trapezoidal structure into the upper portion of the FinFET, it transcend the limitations posed by the self-heating (SH) effect observed in traditional rectangular fins.Through the density gradient model and thermal conduction model, the changes in the electron carrier temperature and lattice temperature of the channel are studied, and the relationship between electrical properties and thermal resistance was further analyzed, revealing the effect of SH on the threshold voltage and switching speed of the device. In addition, the SH effect of the doping of source and drain extension regions was also explored, and the effects of electron mobility changes at different ambient temperatures were also studied to clarify their impact on the electrical properties. Ultimately, this work offers novel insights into the design, optimization, and reliability studies of device structures affected by SH effects.
Funder
the National Key R&D Program of China