Thermal Conductivity Measurements of Ultra-Thin Single Crystal Silicon Layers

Author:

Liu Wenjun1,Asheghi Mehdi1

Affiliation:

1. Mechanical Engineering Department, Carnegie Mellon University, Pittsburgh, PA 15213

Abstract

Self-heating in deep submicron transistors (e.g., silicon-on-insulator and strained-Si) and thermal engineering of many nanoscale devices such as nanocalorimeters and high-density thermomechanical data storage are strongly influenced by thermal conduction in ultra-thin silicon layers. The lateral thermal conductivity of single-crystal silicon layers of thicknesses 20 and 100nm at temperatures between 30 and 450K are measured using joule heating and electrical-resistance thermometry in suspended microfabricated structures. In general, a large reduction in thermal conductivity resulting from phonon-boundary scattering is observed. Thermal conductivity of the 20nm thick silicon layer at room temperature is nearly 22Wm−1K−1, compared to the bulk value, 148Wm−1K−1. The predictions of the classical thermal conductivity theory that accounts for the reduced phonon mean free paths based on a solution of the Boltzmann transport equation along a layer agrees well with the experimental results.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference30 articles.

1. Miniaturized Thermal Analysis Sensor Using Micro-Heaters on SOI Substrate;Furuya;Trans. Instit. Electrical Eng. Japan

2. Convection-Based Micromachined Inclinometer Using SOI Technology;Billat

3. The Design and Operation of a MEMS Differential Scanning Nanocalorimeter for High-Speed Heat Capacity Measurements of Ultrathin Films;Olson;J. Microelectromech. Syst.

4. Atomic Force Microscope Cantilevers for Combined Thermomechanical Data Writing and Reading;King;Appl. Phys. Lett.

5. Efficient Electronic Cooling in Heavily Doped Silicon by Quasiparticle Tunneling;Savin;Appl. Phys. Lett.

Cited by 181 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3