Measurement and gate-voltage dependence of channel and series resistances in lateral depletion-mode β-Ga2O3 MOSFETs

Author:

Maimon OORCID,Moser N A,Liddy K J,Green A J,Chabak K DORCID,Cheung K PORCID,Pookpanratana S,Li Q

Abstract

Abstract Lateral depletion-mode, beta-phase gallium oxide (β-Ga2O3) metal-oxide-semiconductor field-effect transistors (MOSFETs) with source-drain spacings of 3 µm, 8 µm, and 13 µm are studied using a modified transfer length method (TLM) to obtain sheet resistances in the gated and ungated regions as well as to observe their gate electric field dependence. The modified TLM requires the contact resistance to be independent of the gate-source voltage, or changing current density. We verify this by performing measurements on conventional TLM structures in dark and UV conditions and observe a changing current density with constant contact resistance, enabling the development of the proposed method. The conventional and modified TLM give sheet resistances of 20.0 kΩ sq−1 ± 1.0 kΩ sq−1 and 27.5 kΩ sq−1 ± 0.8 kΩ sq−1, respectively. Using a traditional method for determining the channel resistance, the modified TLM improves the convergence of the channel resistances between the three devices, showing higher accuracy than the conventional TLM structures. Gate-source voltage dependence of the sheet resistances is seen in the ungated regions, leading to non-ideal behavior which cannot be observed using the traditional method and conventional TLM structures. These results and analysis methods are important in improving MOSFET parameter extraction and understanding the gate electric field effects on the channel and series resistances in β-Ga2O3 MOSFETs.

Funder

Virginia Microelectronics Consortium

GMU Presidential Scholarship Award

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3