Compact model of retention characteristics of ferroelectric FinFET synapse with MFIS gate stack

Author:

Baig Md AftabORCID,Le Hoang-HiepORCID,De SouravORCID,Chang Che-Wei,Hsieh Chia-Chi,Huang Xiao-Shan,Lee Yao-Jen,Lu Darsen DORCID

Abstract

Abstract In this paper, multiple-fin n- and p-channel HfZrO2 ferroelectric-FinFET devices are manufactured using a gate first process with post metalization annealing. The device transfer characteristics upon program and erase operations are measured and modeled. The drift in the transfer characteristics due to depolarization field and charge injection are captured using the shift in the threshold voltage along with time-dependent modeling of vertical field dependent mobility degradation parameters to develop a physical, computationally efficient, and accurate retention model for ferroelectric-FinFET devices. The modeled conductance is incorporated into deep neural network simulation platform CIMulator to analyze the role of conductance drift due to retention degradation, as well as the importance of the gap between high and low conductance states in improving the image recognition accuracy of neural networks.

Funder

Ministry of Science and Technology

Lam Research Corporation

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference34 articles.

1. Deep image: scaling up image recognition;Wu,2015

2. A hierarchical approach for visual storytelling using image description;Al Nahian,2019

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A recurrence model capturing interface traps for non-zero bandgap GFETs towards dynamic mimicking of synaptic plasticity;Semiconductor Science and Technology;2024-04-18

2. Ferroelectric Field Effect Transistors–Based Content‐Addressable Storage‐Class Memory: A Study on the Impact of Device Variation and High‐Temperature Compatibility;Advanced Intelligent Systems;2024-01-08

3. Application of Ferroelectrics;Advanced Ultra Low‐Power Semiconductor Devices;2023-10-27

4. 28 nm high-k-metal gate ferroelectric field effect transistors based synapses — A comprehensive overview;Memories - Materials, Devices, Circuits and Systems;2023-07

5. Computing-in-Memory with Ferroelectric Materials and Beyond;2023 International VLSI Symposium on Technology, Systems and Applications (VLSI-TSA/VLSI-DAT);2023-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3