HVPE growth of bulk GaN with high conductivity for vertical devices

Author:

Xia SongyuanORCID,Zhang Yumin,Wang Jianfeng,Chen Jihu,Xu Ke

Abstract

Abstract The electrical properties of gallium nitride (GaN) substrate are crucial to the performance of vertical power devices. Bulk GaN substrates with carrier concentrations in the range from 6.7 × 1017 to 1.7 × 1019 cm−3 are grown by hydride vapor phase epitaxy. All samples show no obvious tensile stress regardless of the carrier concentration. Moreover, the mobility of Si-doped high-quality bulk GaN is superior to the GaN template with higher dislocation density at the same carrier concentration. The influence of carrier concentration on the performance of ohmic contact on N-face of Si-doped GaN is also carefully studied by circular transfer length measurement and rapid thermal annealing methods. The specific contact resistivity decreases monotonically with increase of carrier concentration, while it increases with the annealing temperature. The N-face contact becomes non-ohmic when the annealing temperature exceeds the limit value, which increases with the carrier concentration. The sample with carrier concentration of 1.7 × 1019 cm−3 still showed ohmic behavior after annealing at 450 °C. These results are not only useful to improve the electrical properties of N-type bulk GaN substrate, but also provide a potential solution for improving the efficiency of vertical devices in the future.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Key Research Program of Frontier Sciences, CAS

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Progress in GaN Single Crystals: HVPE Growth and Doping;Journal of Inorganic Materials;2023

2. Electrical transport properties of highly doped N-type GaN materials;Semiconductor Science and Technology;2022-04-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3