A novel double-gate trench SOI LDMOS with double-dielectric material by TCAD simulation study

Author:

Guo JinjunORCID,Dai Hongli,Wang Luoxin,Xue YumingORCID,Lyu HaitaoORCID,Niu Wenze

Abstract

Abstract In this paper, a novel double-gate trench silicon-on-insulator lateral double-diffused metal oxide semiconductor field-effect transistor (LDMOS) with double-dielectric material (DGDK-LDMOS) is proposed. DGDK-LDMOS has two dielectric materials: a reverse-L-shaped high-k (HK) thin film and an low-k (LK) buried oxide layer. The HK thin film optimizes the electric field distribution on the drift region surface, attracting electric flux, and the excellent withstand voltage of the LK buried oxide layer can significantly improve the breakdown voltage (BV) and reduce specific on-resistance (R on,sp) of the device. The modulation mechanism of LDMOS by HK thin film and LK buried oxide layer is analyzed. The results show that compared with conventional LDMOS, when the permittivity of HK thin film is 25 and the permittivity of LK buried oxide is 3, the BV of DGDK-LDMOS is increased by 89.6%, the R on,sp is decreased by 26.4%, and the figure of merit (FOM, FOM = BV2/R on,sp) is increased by 397.2% from 3.6 MW cm−2 to 17.9 MW cm−2. Meanwhile, the output characteristics, transfer characteristics, lattice temperature, AC characteristics and switching characteristics of DGDK-LDMOS are also discussed and compared.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3