Comparison of Rotor Wake Identification and Characterization Methods for the Analysis of Wake Dynamics and Evolution

Author:

Quon E. W.,Doubrawa P.,Debnath M.

Abstract

Abstract Optimal wind power plant design requires understanding of wind turbine wake physics and validation of engineering wake models under wake-controlled operating conditions. In this work, we have developed and investigated several different wake identification and characterization methods for analyzing wake evolution and dynamics. The accuracy and robustness of these methods, based on Gaussian function fitting and adaptive contour identification, have been assessed by application to a large-eddy simulation data set. A new contour-based method based on downstream momentum deficit has been considered. Uncertainties arising from wake-identification errors result in characterizations of the wake expansion, recovery, and meandering motion that differ by 19% of the rotor area, 4% of the freestream, and 15% rotor diameter, respectively.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference19 articles.

1. Quantifying Wind Turbine Wake Characteristics from Scanning Remote Sensor Data;Aitken;Journal of Atmospheric and Oceanic Technology,2014

2. Does median filtering truly preserve edges better than linear filtering?;Arias-Castro;The Annals of Statistics,2009

3. A new analytical model for wind-turbine wakes;Bastankhah;Renewable Energy,2014

4. Towards a Simplified DynamicWake Model Using POD Analysis;Bastine;Energies,2015

5. Wind tunnel testing of wake control strategies;Campagnolo

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3