Quantifying Wind Turbine Wake Characteristics from Scanning Remote Sensor Data

Author:

Aitken Matthew L.1,Banta Robert M.2,Pichugina Yelena L.3,Lundquist Julie K.4

Affiliation:

1. Department of Physics, University of Colorado Boulder, Boulder, Colorado

2. NOAA/Earth System Research Laboratory, Boulder, Colorado

3. Cooperative Institute for Research in Environmental Sciences, and NOAA/Earth System Research Laboratory, Boulder, Colorado

4. Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, and National Renewable Energy Laboratory, Golden, Colorado

Abstract

Abstract Because of the dense arrays at most wind farms, the region of disturbed flow downstream of an individual turbine leads to reduced power production and increased structural loading for its leeward counterparts. Currently, wind farm wake modeling, and hence turbine layout optimization, suffers from an unacceptable degree of uncertainty, largely because of a lack of adequate experimental data for model validation. Accordingly, nearly 100 h of wake measurements were collected with long-range Doppler lidar at the National Wind Technology Center at the National Renewable Energy Laboratory in the Turbine Wake and Inflow Characterization Study (TWICS). This study presents quantitative procedures for determining critical parameters from this extensive dataset—such as the velocity deficit, the size of the wake boundary, and the location of the wake centerline—and categorizes the results by ambient wind speed, turbulence, and atmospheric stability. Despite specific reference to lidar, the methodology is general and could be applied to extract wake characteristics from other remote sensor datasets, as well as computational simulation output. The observations indicate an initial velocity deficit of 50%−60% immediately behind the turbine, which gradually declines to 15%−25% at a downwind distance x of 6.5 rotor diameters (D). The wake expands with downstream distance, albeit less so in the vertical direction due to the presence of the ground: initially the same size as the rotor, the extent of the wake grows to 2.7D (1.2D) in the horizontal (vertical) at x = 6.5D. Moreover, the vertical location of the wake center shifts upward with downstream distance because of the tilt of the rotor.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3