Evaluation of Engineering Models for Large‐Scale Cluster Wakes With the Help of In Situ Airborne Measurements

Author:

zum Berge Kjell1ORCID,Centurelli Gabriele2,Dörenkämper Martin3ORCID,Bange Jens1,Platis Andreas1ORCID

Affiliation:

1. Geo‐ and Environmental Sciences Eberhard‐Karls‐Universitaet Tuebingen Baden‐Württemberg Germany

2. ForWind‐Wind Energy Research Center Carl von Ossietzky University of Oldenburg Oldenburg Germany

3. Fraunhofer Institute for Wind Energy Systems Bremerhaven Germany

Abstract

ABSTRACTThe planned expansion of wind energy in the German Bight is creating much more densely staggered wind farms and wind farm clusters. This results in a significantly greater influence of the generated wakes on energy production of neighboring wind farms. The Dornier‐128 research aircraft operated by the Technische Universität of Braunschweig was used to measure the wind field in the lee of single and multiple wind farm clusters in the German Bight on 4 days during July 2020 and July 2021. The data at 120 m aMSL (above mean sea level) were analyzed to identify wake areas and the wind speed decrease behind the wind farm clusters. The observations were then compared to a range of numerical data including the mesoscale model Weather Research and Forecasting (WRF) applying a wind farm parameterization (WRF with wind farm parameterization [WRF‐WF]) to model wake effects and an engineering model with different setups. A model calibrated on a single wind farm is established as the baseline. A modification with a lower wake recovery, the TurbOPark model, and a WRF‐coupled model make up the three additional declinations considered. Overall, the models compared well to the measurement data in the direct vicinity of the wind farms and up to 20–30 km downstream of the wind farm clusters. The accuracy in wind speed prediction of the model results decreased with distance to the wind farms, where the mesoscale model (WRF‐WF) exhibited a more consistent performance across varying distances.

Publisher

Wiley

Reference57 articles.

1. P.Bojek “Wind Electricity ” (2022) https://www.iea.org/reports/wind‐electricity visited 03‐November‐2022.

2. Deutsche WindGuard GmbH “German Wind Energy in Numbers ” (2022) https://www.wind‐energie.de/english/statistics/statistics‐germany/ visited 03‐November‐2022.

3. Deutsche WindGuard GmbH “Status des Offshore‐Windenergieausbaus in Deutschland Erstes Halbjahr 2023 ” (2023) https://www.windguard.de/id‐1‐halbjahr‐2023.html?file=files/cto_layout/img/unternehmen/windenergiestatistik/2023/Halbjahr/StatusdesOffshore‐Windenergieausbaus_Halbjahr2023.pdf visited 19‐September‐2023.

4. Press and Information Office of the Federal Government “More Wind Energy at Sea ” (2022) https://www.bundesregierung.de/breg‐en/issues/offshore‐wind‐energy‐act‐2024112 visited 03‐November‐2022.

5. Cluster Wakes Impact on a Far‐Distant Offshore Wind Farm's Power;Schneemann J.;Wind Energy Science,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3