Abstract
The helix approach is a new individual pitch control method to mitigate wake effects of wind turbines. Its name is derived from the helical shape of the wake caused by a rotating radial force exerted by the turbine. While its potential to increase power production has been shown in previous studies, the physics of the helical wake are not well understood to date. Open questions include whether the increased momentum in the wake stems from an enhanced wake mixing or from the wake deflection. Furthermore, its application to a row of more than two turbines has not been examined before. We study this approach in depth from both an analytical and numerical perspective. We examine large-eddy simulations (LES) of the wake of a single turbine and find that the helix approach exhibits both higher entrainment and notable deflection. As for the application to a row of turbines, we show that the phase difference between two helical wakes is independent of ambient turbulence. Examination of LES of a row of three turbines shows that power gains greatly depend on the phase difference between the helices. We find a maximum increase in the total power of approximately 10 % at a phase difference of
$270^\circ$
. However, we do not optimise the phase difference any further. In summary, we provide a set of analytical tools for the examination of helical wakes, show why the helix approach is able to increase power production, and provide a method to extend it to a wind farm.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献