Improve topic modeling algorithms based on Twitter hashtags

Author:

Alash Hayder M,Al-Sultany Ghaidaa A

Abstract

Abstract Today with increase using social media, a lot of researchers have interested in topic extraction from Twitter. Twitter is an unstructured short text and messy that it is critical to find topics from tweets. While topic modeling algorithms such as Latent semantic analysis (LSA) and Latent Dirichlet Allocation (LDA) are originally designed to derive topics from large documents such as articles, and books. They are often less efficient when applied to short text content like Twitter. Luckily, Twitter has many features that represent the interaction between users. Tweets have rich user-generated hashtags as keywords. In this paper, we exploit the hashtags feature to improve topics learned from Twitter content without modifying the basic topic model of LSA and LDA. Users who share the same hashtag at most discuss the same topic. We compare the performance of the two methods (LSA and LDA) using the topic coherence ( with and without hashtags). The experiment result on the Twitter dataset showed that LSA has better coherence score with hashtags than that do not incorporate hashtags. In contrast, our experiments show that the LDA has a better coherence score without incorporating hashtags. Finally, LDA has a better coherence score than LSA and the best coherence result obtained from the LDA method was (0.6047) and the LSA method was (0.4744) but the number of topics in LDA was higher than LSA. Thus, LDA may cause the same tweets to discuss the same subject set into different clustering.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference19 articles.

1. Latent dirichlet allocation;Blei;J. Mach. Learn. Res.,2003

2. Indexing by latent semantic analysis;Deerwester;J. Am. Soc. Inf. Sci.,1990

3. Probabilistic latent semantic indexing;Hofmann,1999

4. A survey of recent methods on deriving topics from Twitter: algorithm to evaluation;Nugroho,2020

5. Performance evaluation of topic modeling algorithms for text classification;Anantharaman,2019

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3