TCMeta: a multilingual dataset of COVID tweets for relation-level metaphor analysis

Author:

Brglez Mojca,Zayed Omnia,Buitelaar Paul

Abstract

AbstractThe COVID pandemic spurred the use of various metaphors, some very common and universal, others depending on the language, country and culture. The use of metaphors by the general public, especially in languages other than English, has not yet been sufficiently investigated, one of the reasons being the lack of resources and automatic tools for metaphor analysis. To fill this gap, we introduce TCMeta, a dataset of tweets annotated for metaphors around COVID-19, in two languages from ten different countries. The dataset contains metaphoric phrases covering four source domains. Furthermore, we introduce a semi-automatic methodology to annotate more than 2000 tweets in English and Slovene. To the best of our knowledge, this is the first multilingual semi-automatically compiled dataset of user-generated texts aimed at investigating metaphorical language about the pandemic. It is also the first Slovene dataset of tweets annotated for metaphors.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

Science Foundation Ireland

Horizon 2020

Publisher

Springer Science and Business Media LLC

Reference123 articles.

1. Abdo, M.S., Alghonaim, A.S., & Essam, B.A. (2020). Public perception of COVID-19’s global health crisis on Twitter until 14 weeks after the outbreak. Digital Scholarship in the Humanities, Sep 2 (fqaa037). https://doi.org/10.1093/llc/fqaa037

2. Agarwal, A., Xie, B., Vovsha, I., Rambow, O., & Passonneau, R. (2011). Sentiment analysis of Twitter data. In: Proceedings of the workshop on language in social media (LSM 2011) (pp. 30–38). Association for Computational Linguistics. Retrieved from https://aclanthology.org/W11-0705

3. Alash, H., & Al-Sultany, G. (2020). Improve topic modeling algorithms based on Twitter hashtags. Journal of Physics: Conference Series, 1660(1), 012100. https://doi.org/10.1088/1742-6596/1660/1/012100

4. Angelov, D. (2020). top2vec: Distributed representations of topics. ArXiv, abs/2008.09470. Retrieved from arXiv:2008.09470

5. Antloga, Š. (2020a). Metaphor corpus KOMET 1.0. Retrieved from http://hdl.handle.net/11356/1293 (Slovenian language resource repository CLARIN.SI)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3