Wavelet Adaptive Control for Robotic Manipulator With Input Deadzone

Author:

Sun Yongfu,Zhao Dequan,Wang Yuchao

Abstract

Abstract In this paper, the adaptive wavelet neural network (WNN) tracking control problem is investigated for robotic manipulator with input deadzone. The WNN is used to approximate the unknown nonlinear function and the derivative of virtual control in the system, which avoids the problem “explosion of complexity” in the traditional backsteppinng control methods, the requirement of input instruction signal is reduced. The robust term is designed to compensate the approximation errors of WNN and external disturbance. Since wavelet functions are used in WNN, its learning capability is precede to the traditional neural network for system identification. It is proved that the proposed controller can guarantee that all signals of the closed-loop system are uniformly ultimately bounded. Simulation results demonstrate the effectiveness of the proposed approach.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference18 articles.

1. A nonlinear disturbance observer for robotic manipulators;Chen;IEEE Trans. Ind. Electron.,2000

2. Adaptive neural network control for robotic manipulators with guaranteed finite-time convergence;Luan;Neurocomputing,2019

3. Adaptive Fuzzy Tracking Control of Flexible-Joint RobotsBased on Command Filtering;Song;IEEE/CAA J. Autom. Sinica.,2019

4. Adaptive linear controller for robotic manipulators;Koivo;IEEE Trans. Automat. Contr.,2000

5. An adaptive fuzzy sliding mode controller for robotic manipulators;Guo;IEEE Trans. Syst. Man Cybern. Syst.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3