Numerical simulation of a hybrid trapped field magnet lens (HTFML) magnetized by pulsed fields

Author:

Shinden Motoki,Namba Sora,Hirano Tatsuya,Fujishiro Hiroyuki,Naito Tomoyuki,Ainslie Mark D

Abstract

Abstract The hybrid trapped field magnet lens (HTFML) is a promising device that is able to concentrate a magnetic field higher than an applied background field continuously, even after removing a background field, which was conceptually proposed by the authors in 2018. We have numerically investigated the HTFML performance, consisting of a REBaCuO cylindrical magnetic lens and REBaCuO trapped field magnet (TFM) cylinder, magnetized by pulsed fields. Single magnetic pulses were applied ranging from B app = 1.5 T to 5.0 T at the operating temperature of T s = 30, 40 and 50 K, and the performance was compared with that of the single REBaCuO TFM cylinder. The HTFML effect was clearly confirmed for the lower B app values. However, for the higher B app values, the trapped field in the magnetic lens bore was nearly equal to or slightly lower than that for the single TFM cylinder because of a weakened lens effect due to magnetic flux penetration into the lens. A temperature rise in the REBaCuO magnetic lens and TFM cylinder was also observed. These results strongly suggest that lowering the temperature of the REBaCuO magnetic lens could enhance the HTFML effect even for higher B app.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3