Possibility of mechanical fracture of superconducting ring bulks due to thermal stress induced by local heat generation during pulsed-field magnetization

Author:

Shinden Motoki,Fujishiro HiroyukiORCID,Takahashi KeitaORCID,Ainslie Mark DORCID

Abstract

Abstract During quasi-static magnetization of bulk superconductors using field-cooled magnetization (FCM) from high fields at low temperatures, such bulks are sometimes broken, which is believed to be mainly due to an electromagnetic force—and subsequent stress—larger than the fracture strength. However, a ring bulk can break, even during pulsed field magnetization (PFM), from relatively lower pulsed fields and at relatively higher temperatures. Previous simulation results suggest that the ring bulk should not break due to the electromagnetic force during PFM. In this paper, taking experimental and numerical results into consideration, we propose the possibility of mechanical fracture of a ring bulk during PFM due to thermal stress induced by local heat generation, which has not been considered and investigated to date. Two numerical models with different sizes of heat-generating region were constructed for the ring bulk with a relatively large inner diameter (60 mm outer diameter, 36 mm inner diameter, 17 mm height). For Model-1, with a large heat region, the bulk fracture due to the thermal stress results from the tensile stress along the radial direction in the neighboring heat region. The risk of bulk fracture is enhanced at the inner or outer edges of the bulk surface, compared with that inside the bulk. For Model-2, with a small heat region inside the bulk, the bulk fracture due to the thermal stress results from the compressive stress along the radial direction in the neighboring heat region. These results strongly suggest the possibility of mechanical fracture of an actual ring bulk due to thermal stress induced by local heat generation. This idea is also applicable more generally to the fracture mechanism during FCM of superconducting bulks.

Funder

KAKENHI

Engineering and Physical Sciences Research Council

Japan Science and Technology Agency

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3