Fault diagnosis in district heating networks

Author:

Bahlawan H,Gambarotta A,Losi E,Manservigi L,Morini M,Saletti C,Spina P R,Venturini M

Abstract

Abstract District Heating Networks (DHNs), which dispatch thermal energy from a heat source to end-users by means of a heat carrier, are composed of pipes that can be affected by faults that endanger system reliability. Thus, reliable diagnostic approaches have to be employed to evaluate the health state of the DHN. In the framework of the ENERGYNIUS research project, the authors of this paper developed a diagnostic approach aimed at detecting and identifying the most frequent faults that affect DHN pipes, i.e., water leakages, heat losses and pressure losses. The diagnostic approach detects and identifies pipe faults by coupling a DHN model with an optimization algorithm. As a result, the health indices of each pipe of the DHN, the fault position, its type and magnitude are provided. This study investigates the capability of the diagnostic approach by using two datasets, in which challenging faults were hypothetically implanted in the DHN of the campus of the University of Parma. The diagnostic approach successfully detected and identified both faults, by also accurately assessing fault magnitude. In addition, the relative error with which each DHN variable is predicted is lower than 0.06 %.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3