Optimal Management of the Energy Flows of Interconnected Residential Users

Author:

Manservigi Lucrezia,Cattozzo Mattia,Spina Pier Ruggero,Venturini MauroORCID,Bahlawan Hilal

Abstract

In recent years, residential users have begun to be equipped with micro-CHP (combined heat and power) generation technologies with the aim of decreasing primary energy consumption and reducing environmental impact. In these systems, the prime mover supplies both thermal and electrical energy, and an auxiliary boiler and the national electrical grid are employed as supplementary systems. In this paper, a simulation model, which accounts for component efficiency and energy balance, was developed to replicate the interaction between the users and the energy systems in order to minimize primary energy consumption. The simulation model identified the optimal operation strategy of two residential users by investigating different energy system configurations by means of a dynamic programming algorithm. The reference scenario was compared to three different scenarios by considering independent energy systems, shared thermal and electrical energy storage and also the shared prime mover. Such a comparison allowed the identification of the most suitable energy system configuration and optimized operation strategy. The results demonstrate that the optimized operation strategy smoothes the influence of the size of thermal and electrical energy storage. Moreover, the saving of primary energy consumption can be as high as 5.1%. The analysis of the economic feasibility reveals that the investment cost of the prime mover can be as high as 4000 €/kW.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference74 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3