AGA-LSTM: An Optimized LSTM Neural Network Model Based on Adaptive Genetic Algorithm

Author:

Bai Chenyao

Abstract

Abstract With the increase of the hidden layer, the weight update of the LSTM neural network model depends heavily on the gradient descent algorithm, and the convergence speed is slow, resulting in the local extremum of the weight adjustment, which affects the prediction performance of the model. Based on this, this paper proposes an optimized LSTM neural network model based on adaptive genetic algorithm (AGA-LSTM). In this model, the mean squared error is designed as the fitness function, and the adaptive genetic algorithm (AGA) is used to globally optimize the weights between neuron nodes of the LSTM model to improve the generalization ability. The experimental results show that, on the UCI dataset, the prediction accuracy of the AGA-LSTM model is greatly improved compared to the standard LSTM model, which verifies the rationality of the model.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference13 articles.

1. Evolving RBF neural networks for rainfall prediction using hybrid particle swarm optimization and genetic algorithm[J];Wu;Neurocomputing,2015

2. Sequence to sequence learning with neural networks[C];Sutskever,2014

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3