Improved deep network‐based load predictor and optimal load balancing in cloud‐fog services

Author:

Singh Shubham1ORCID,Mishra Amit Kumar2,Arjaria Siddhartha Kumar3,Bhatt Chinmay4,Pandey Daya Shankar4,Yadav Ritesh Kumar4

Affiliation:

1. Department of Computer Engineering & Application GLA University Chaumuhan Mathura India

2. Department of Computer Science and Engineering Sagar Institute of Science and Technology (SISTec) Bhopal India

3. Department of IT Rajkiya Engineering College Banda India

4. Department of Computer Science Engineering RKDF Institute of Science & Technology Bhopal India

Abstract

SummaryCloud computing is commonly utilized in remote contexts to handle user demands for resources and services. Each assignment has unique processing needs that are determined by the time it takes to complete. However, if load balancing is not properly managed, the effectiveness of resources may suffer dramatically. Consequently, cloud service providers have to emphasize rapid and precise load balancing as well as proper resource supply. This paper proposes a novel enhanced deep network‐based load predictor and load balancing in cloud‐fog services. In prior, the workload is predicted using a deep network called Multiple Layers Assisted in LSTM (MLA‐LSTM) model that considers the capacity of virtual machine (VM) and task as input and predicts the target label as underload, overload and equally balanced. According to this prediction, the optimal load balancing is performed through a hybrid optimization named Osprey Assisted Pelican Optimization Algorithm (OAPOA) while taking into account several parameters such as makespan, execution cost, resource consumption, and server load. Additionally, a process known as load migration is carried out, in which machines with overload tasks are assigned to machines with underload tasks. This migration is applied optimally via the OAPOA strategy under the consideration of constraints including migration cost and migration efficiency.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3