Variable Parameters Stiffness Identification and Modeling for Positional Compensation of Industrial Robots

Author:

Jiao Jiachen,Tian Wei,Zhang Lin,Li Bo,Hu Junshan

Abstract

Abstract Due to the weak stiffness of robot structure, the positional accuracy of industrial robots under load can hardly meet the application requirements of high-precision machining. Predicting and compensating errors by accurate stiffness modeling is an effective method to improve robot positional accuracy. Existing stiffness modeling methods use theoretical kinematic parameters and approximate the joint stiffness to a fixed value, so that the modeling accuracy is poor. Thus, this paper proposes a regular sampling point selection method by space gridding. Then, combining Levenberg-Marquardt kinematics parameter calibration and static joint stiffness identification methods, a comprehensive identification method is proposed to achieve simultaneous identifying of robot kinematics and stiffness parameters. Next, a variable parameter stiffness model could be established, according to the identification results in different workspaces. Finally, a model-based error prediction and compensation method is put forward through online sensing of external load. The error compensation is performed on a KR500 robot, and experimental results verified that the average value of absolute positional errors caused by external load, could be reduced by 44.61%, compared with the traditional compensation method.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference15 articles.

1. Stability of lateral vibration in robotic rotary ultrasonic drilling;Song,2018

2. Modeling of Robotic Drilling;Garnier;Procedia CIRP,2017

3. Simultaneous identification of joint compliance and kinematic parameters of in-dustrial robots;Zhou;International Journal of Precision Engineering and Manufacturing.,2014

4. Vibration analysis and suppression in robotic boring process;Guo;International Journal of Machine Tools and Manufacture.,2016

5. Cartesian compliance model for industrial robots using virtual joints;Abele;Production Engineering,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3