YogurtNet: Enhanced machine learning approach for voltage drop prediction

Author:

Liang Longxi,Xian Yuxiang,Guo Shaoshan,Xie Zhuoming

Abstract

Abstract The aim of this study is to design and implement YogurtNet, a machine learning based static voltage drop (IR Drop) prediction system for SoC power networks. The system employs class image processing techniques, unsupervised learning clustering methods and shallow neural network techniques. Important algorithmic components include the Word2Vec algorithm for implementing clustering, which maps instance names into a name coordinate system; the Pix2pix algorithm for transforming 17 channels of raw data into two channels of predicted data; and an in-house developed shallow neural network, YogurtPyramid, which is used to further approximate and optimize the prediction results. Our model is trained on the names, coordinates, power consumption, and resistance of the back-end layout component instances of three mainstream open-source SoCs (RISCY, Zero-riscy, and RISCY-FPU), and successfully predicts the IR Drop data of each on-chip instance. In terms of model execution results, the average execution time is 69.94 seconds and the average MAE value is 5.2784, demonstrating the high accuracy prediction capability of the model.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3