Symbolic Regression Based Feature Extraction of Shallow Neural-Networks for Identification and Prediction

Author:

Beyhan Selami,

Abstract

This paper proposes a feature extraction method to improve the performance of shallow neural-network models with less number of parameters to apply especially on embedded system design at remote applications. Feature extraction method is designed using fuzzy c-means clustering based fuzzy system design cascaded a layer of symbolic operators and functions, respectively. During the training stage of neural-networks, symbolic operators and functions are selected using random-learning theory with the unity internal weights such that based on the prediction performance, optimal sequences are recorded for feature extraction to be utilized on testing phase. Extracted features are here used to empower the single-layer neural-network (SLNN) with sigmoid hyperbolic activation functions, functional-link neural- network (FLNN) with Chebyshev polynomials and Pi-Sigma higher-order neural-network (PSNN) with sigmoid activation functions, respectively. The internal and output parameters of the appended shallow neural-networks are optimized using batch optimization methods. Proposed regression models are first tested on identification of an artificial discrete-time dynamic system and real-time inverted pendulum then also for prediction of the sunspot time-series and traffic density estimation. As a result, the prediction performance of shallow neural networks is improved to be used in future applications.

Publisher

Institute of Electronics and Computer

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. YogurtNet: Enhanced machine learning approach for voltage drop prediction;Journal of Physics: Conference Series;2024-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3