Benchmark and application of unsupervised classification approaches for univariate data

Author:

El Abbassi MariaORCID,Overbeck JanORCID,Braun OliverORCID,Calame MichelORCID,van der Zant Herre S. J.ORCID,Perrin Mickael L.ORCID

Abstract

AbstractUnsupervised machine learning, and in particular data clustering, is a powerful approach for the analysis of datasets and identification of characteristic features occurring throughout a dataset. It is gaining popularity across scientific disciplines and is particularly useful for applications without a priori knowledge of the data structure. Here, we introduce an approach for unsupervised data classification of any dataset consisting of a series of univariate measurements. It is therefore ideally suited for a wide range of measurement types. We apply it to the field of nanoelectronics and spectroscopy to identify meaningful structures in data sets. We also provide guidelines for the estimation of the optimum number of clusters. In addition, we have performed an extensive benchmark of novel and existing machine learning approaches and observe significant performance differences. Careful selection of the feature space construction method and clustering algorithms for a specific measurement type can therefore greatly improve classification accuracies.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Reference69 articles.

1. International Data Corporation (IDC). Worldwide Spending on Artificial Intelligence Systems Will Be Nearly $98 Billion in 2023 https://www.idc.com/getdoc.jsp?containerId=prUS45481219 (2019).

2. Schmidhuber, J. Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015).

3. Sun, Y., Wang, X. & Tang, X. Deep learning face representation from predicting 10,000 classes. In Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1891–1898 (IEEE Computer Society, 2014).

4. Liu, Z., Luo, P., Wang, X. & Tang, X. Deep learning face attributes in the wild. In 2015 IEEE International Conference on Computer Vision (ICCV) 3730–3738 (IEEE Computer Society, 2015).

5. Mikolov, T., Karafiát, M., Burget, L., Cernocký, J. & Khudanpur, S. Recurrent neural network based language model. In Proc. 11th Annual Conference of the International Speech Communication Association, INTERSPEECH 2010 (eds. Kobayashi, T., Hirose, K. & Nakamura, S.) Vol. 2, 1045–1048 (Interspeech, 2010).

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3