Investigation on Online DGA Monitoring to Determine Transformer Health Index Using Machine Learning

Author:

Solehin Shamsudin M,Yakub Fitri,Ibrahim Shapiai M,Mohmad Azlan,Amirah Abd Hamid N

Abstract

Abstract The Dissolve Gas Analysis (DGA) to determine the ageing and degradation of the transformer is standard and routine periodic maintenance. In general, there are two DGA analysis methods which are conventional (lab-based) and online monitoring. DGA monitoring will be able to access to detect incipient fault and transformer failure. Several techniques are available to analyse, interpret and diagnose the DGA result, such as IEEE standard, IEC 60599 standard, Key Gas Method, and Duval methods. There are several Machine Learning (ML) techniques has been explored such as Support Vector Machine (SVM), Artificial Neural Network (ANN), K-Neural Neighbours (KNN), Random Neural Network (RNN), and Fuzzy Logic for determining the transformer condition, including fault diagnostic and fault detection. However, there are unexplored studies to combine the commercial device to determine the Health Index (HI) of Transformer. In this study, an ML method with the available input feature from the commercial device to the network is trained to determine the HI. In general, the benchmark dataset from the existing work is employed to validate the proposed investigation. There are 730 datasets comprising five different classes; 1) Very Good, 2) Good, 3) Fair, 4) Poor, 5) Very Poor in determining the HI of a transformer. Conventional rule to partition the train and testing dataset with a 70:30 ratio is employed in this study. The maximum accuracy results and method for 1) M1 is 66.67% for ANN, 2) M2 is 68.49% for ANN, 3) M3 is 76.71% for KNN, 4) M5 is 76.26% for ANN, 5) M6 is 79.00% for ANN and 6) M7 is 86.30% for ANN. In conclusion, the multi-gas device will have a good accuracy performance and provide a good HI indicator to classify the condition of the transformer, which can be used for preventive maintenance.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3