Power Transformer Fault Severity Estimation Based on Dissolved Gas Analysis and Energy of Fault Formation Technique

Author:

Mharakurwa Edwell T.1ORCID,Nyakoe G. N.2,Akumu A. O.3

Affiliation:

1. Department of Electrical Engineering, Pan African University Institute for Basic Sciences, Technology and Innovation (PAUSTI), P.O. Box 62000-00200, City Square, Nairobi, Kenya

2. Department of Electrical Engineering, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000-00200, City Square, Nairobi, Kenya

3. Department of Electrical Engineering, Tshwane University of Technology (TUT), Private Bag X680 0001, Pretoria, South Africa

Abstract

Decision making on transformer insulation condition based on the evaluated incipient faults and aging stresses has been the norm for many asset managers. Despite being the extensively applied methodology in power transformer incipient fault detection, solely dissolved gas analysis (DGA) techniques cannot quantify the detected fault severity. Fault severity is the core property in transformer maintenance rankings. This paper presents a fuzzy logic methodology in determining transformer faults and severity through use of energy of fault formation of the evolved gasses during transformer faulting event. Additionally, the energy of fault formation is a temperature-dependent factor for all the associated evolved gases. Instead of using the energy-weighted DGA, the calculated total energy of related incipient fault is used for severity determination. Severity of faults detected by fuzzy logic-based key gas method is evaluated through the use of collected data from several in-service and faulty transformers. DGA results of oil samples drawn from transformers of different specifications and age are used to validate the model. Model results show that correctly detecting fault type and its severity determination based on total energy released during faults can enhance decision-making in prioritizing maintenance of faulty transformers.

Funder

Pan African University Institute for Basic Sciences, Technology and Innovation

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3