Author:
Ngwenyama M. K.,Gitau M. N.
Abstract
AbstractThis work examines the application of machine learning (ML) algorithms to evaluate dissolved gas analysis (DGA) data to quickly identify incipient faults in oil-immersed transformers (OITs). Transformers are pivotal equipment in the transmission and distribution of electrical power. The failure of a particular unit during service may interrupt a massive number of consumers and disrupt commercial activities in that area. Therefore, several monitoring techniques are proposed to ensure that the unit maintains an adequate level of functionality in addition to an extended useful lifespan. DGA is a technique commonly employed for monitoring the state of OITs. The understanding of DGA samples is conversely unsatisfactory from the perspective of evaluating incipient faults and relies mainly on the proficiency of test engineers. In the current work, a multi-classification model that is centered on ML algorithms is demonstrated to have a logical, precise, and perfect understanding of DGA. The proposed model is used to analyze 138 transformer oil (TO) samples that exhibited different stray gassing characteristics in various South African substations. The proposed model combines the design of four ML classifiers and enhances diagnosis accuracy and trust between the transformer manufacturer and power utility. Furthermore, case reports on transformer failure analysis using the proposed model, IEC 60599:2022, and Eskom (Specification—Ref: 240-75661431) standards are presented. In addition, a comparison analysis is conducted in this work against the conventional DGA approaches to validate the proposed model. The proposed model demonstrates the highest degree of accuracy of 87.7%, which was produced by Bagged Trees, followed by Fine KNN with 86.2%, and the third in rank is Quadratic SVM with 84.1%.
Publisher
Springer Science and Business Media LLC
Reference131 articles.
1. Poonnoy, N., Suwanasri, C. & Suwanasri, T. Neural network approach to dissolved gas analysis for fault analysis in power transformers. In 2022 International Electrical Engineering Congress (iEECON) (eds Poonnoy, N. et al.) 1–4 (IEEE, 2022).
2. Jia, J. et al. Validity evaluation of transformer DGA online monitoring data in grid edge systems. IEEE Access 8, 60759–60768 (2020).
3. Wang, L., Littler, T. & Liu, X. Gaussian process multi-class classification for transformer fault diagnosis using dissolved gas analysis. IEEE Trans. Dielectr. Electr. Insul. 28(5), 1703–1712 (2021).
4. Gouda, O. E., El-Hoshy, S. H. & Ghoneim, S. S. Enhancing the diagnostic accuracy of DGA techniques based on IEC-TC10 and related databases. IEEE Access 9, 118031–118041 (2021).
5. Cui, H. et al. Impact of load ramping on power transformer dissolved gas analysis. IEEE Access 7, 170343–170351 (2019).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献