Abstract
Abstract
Light scalar dark matter (DM) with scalar couplings to matter is expected within several scenarios to induce variations in the fundamental constants of nature. Such variations can be searched for, among other ways, via atomic spectroscopy. Sensitive atomic observables arise primarily due to possible changes in the fine-structure constant or the electron mass. Most of the searches to date have focused on slow variations of the constants (i.e. modulation frequencies <1 Hz). In a recent experiment (2019 Phys. Rev. Lett.
123 141102) called weekend relaxion-search laboratory (WReSL), we reported on a direct search for rapid variations in the radio-frequency band. Such a search is particularly motivated within a class of relaxion DM models. We discuss the WReSL experiment, report on progress toward improved measurements of rapid fundamental constant variations, and discuss the planned extension of the work to molecules, in which rapid variations of the nuclear mass can be sensitively searched for.
Funder
European Research Council (ERC) under the European Union Horizon 2020 research and innovation program
German Research Foundation (DFG) within the German Excellence Strategy
Russian Science Foundation
Subject
Electrical and Electronic Engineering,Physics and Astronomy (miscellaneous),Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献