Simulating noise on a quantum processor: interactions between a qubit and resonant two-level system bath

Author:

Cho YujinORCID,Jasrasaria DiptiORCID,Ray Keith GORCID,Tennant Daniel MORCID,Lordi VincenzoORCID,L DuBois JonathanORCID,Rosen Yaniv JORCID

Abstract

Abstract Material defects fundamentally limit the coherence times of superconducting qubits, and manufacturing completely defect-free devices is not yet possible. Therefore, understanding the interactions between defects and a qubit in a real quantum processor design is essential. We build a model that incorporates the standard tunneling model, the electric field distributions in the qubit, and open quantum system dynamics, and draws from the current understanding of two-level system (TLS) theory. Specifically, we start with one million TLSs distributed on the surface of a qubit and pick the 200 systems that are most strongly coupled to the qubit. We then perform a full Lindbladian simulation that explicitly includes the coherent coupling between the qubit and the TLS bath to model the time dependent density matrix of resonant TLS defects and the qubit. We find that the 200 most strongly coupled TLSs can accurately describe the qubit energy relaxation time. This work confirms that resonant TLSs located in areas where the electric field is strong can significantly affect the qubit relaxation time, even if they are located far from the Josephson junction (JJ). Similarly, a strongly-coupled resonant TLS located in the JJ does not guarantee a reduced qubit relaxation time if a more strongly coupled TLS is far from the JJ. In addition to the coupling strengths between TLSs and the qubit, the model predicts that the geometry of the device and the TLS relaxation time play a significant role in qubit dynamics. Our work can provide guidance for future quantum processor designs with improved qubit coherence times.

Funder

Basic Energy Sciences

U.S. Department of Energy

Lawrence Livermore National Laboratory

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Physics and Astronomy (miscellaneous),Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3