Modelling non-Markovian noise in driven superconducting qubits

Author:

Agarwal AbhishekORCID,Lindoy Lachlan PORCID,Lall DeepORCID,Jamet François,Rungger IvanORCID

Abstract

Abstract Non-Markovian noise can be a significant source of errors in superconducting qubits. We develop gate sequences utilising mirrored pseudoidentities that allow us to characterise and model the effects of non-Markovian noise on both idle and driven qubits. We compare three approaches to modelling the observed noise: (i) a Markovian noise model, (ii) a model including interactions with a two-level system (TLS), (iii) a model utilising the post Markovian master equation, which we show to be equivalent to the qubit-TLS model in certain regimes. When running our noise characterisation circuits on a superconducting qubit device we find that purely Markovian noise models cannot reproduce the experimental data. Our model based on a qubit-TLS interaction, on the other hand, is able to closely capture the observed experimental behaviour for both idle and driven qubits. We investigate the stability of the noise properties of the hardware over time, and find that the parameter governing the qubit-TLS interaction strength fluctuates significantly even over short time-scales of a few minutes. Finally, we evaluate the changes in the noise parameters when increasing the qubit drive pulse amplitude. We find that although the hardware noise parameters fluctuate significantly over different days, their drive pulse induced relative variation is rather well defined within computed uncertainties: both the phase error and the qubit-TLS interaction strength change significantly with the pulse strength, with the phase error changing quadratically with the amplitude of the applied pulse. Since our noise model can closely describe the behaviour of idle and driven qubits, it is ideally suited to be used in the development of quantum error mitigation and correction methods.

Publisher

IOP Publishing

Reference73 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Geometric Refactoring of Quantum and Reversible Circuits Using Graph Algorithms;IEICE Transactions on Information and Systems;2024-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3