Author:
Chyba Rabeendran Amandin,Denneau Larry
Abstract
Abstract
In this paper we present a two-step neural network model to separate detections of solar system objects from optical and electronic artifacts in data obtained with the “Asteroid Terrestrial-impact Last Alert System” (ATLAS), a near-Earth asteroid sky survey system. A convolutional neural network is used to classify small “postage-stamp” images of candidate detections of astronomical sources into eight classes, followed by a multi-layered perceptron that provides a probability that a temporal sequence of four candidate detections represents a real astronomical source. The goal of this work is to reduce the time delay between Near-Earth Object (NEO) detections and submission to the Minor Planet Center. Due to the rare and hazardous nature of NEOs, a low false negative rate is a priority for the model. We show that the model reaches 99.6% accuracy on real asteroids in ATLAS data with a 0.4% false negative rate. Deployment of this model on ATLAS has reduced the amount of NEO candidates that astronomers must screen by 90%, thereby bringing ATLAS one step closer to full autonomy.
Funder
National Science Foundation Research Experience for Undergraduate grant
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献