Euclid: Identification of asteroid streaks in simulated images using deep learning

Author:

Pöntinen M.ORCID,Granvik M.ORCID,Nucita A. A.,Conversi L.ORCID,Altieri B.,Carry B.,O’Riordan C. M.,Scott D.,Aghanim N.,Amara A.,Amendola L.,Auricchio N.,Baldi M.,Bonino D.,Branchini E.,Brescia M.,Camera S.,Capobianco V.,Carbone C.,Carretero J.,Castellano M.,Cavuoti S.,Cimatti A.,Cledassou R.,Congedo G.,Copin Y.,Corcione L.,Courbin F.,Cropper M.,Da Silva A.,Degaudenzi H.,Dinis J.,Dubath F.,Dupac X.,Dusini S.,Farrens S.,Ferriol S.,Frailis M.,Franceschi E.,Fumana M.,Galeotta S.,Garilli B.,Gillard W.,Gillis B.,Giocoli C.,Grazian A.,Haugan S. V. H.,Holmes W.,Hormuth F.,Hornstrup A.,Jahnke K.,Kümmel M.,Kermiche S.,Kiessling A.,Kitching T.,Kohley R.,Kunz M.,Kurki-Suonio H.,Ligori S.,Lilje P. B.,Lloro I.,Maiorano E.,Mansutti O.,Marggraf O.,Markovic K.,Marulli F.,Massey R.,Medinaceli E.,Mei S.,Melchior M.,Mellier Y.,Meneghetti M.,Meylan G.,Moresco M.,Moscardini L.,Munari E.,Niemi S.-M.,Nutma T.,Padilla C.,Paltani S.,Pasian F.,Pedersen K.,Pettorino V.,Pires S.,Polenta G.,Poncet M.,Raison F.,Renzi A.,Rhodes J.,Riccio G.,Romelli E.,Roncarelli M.,Rossetti E.,Saglia R.,Sapone D.,Sartoris B.,Schneider P.,Secroun A.,Seidel G.,Serrano S.,Sirignano C.,Sirri G.,Stanco L.,Tallada-Crespí P.,Taylor A. N.,Tereno I.,Toledo-Moreo R.,Torradeflot F.,Tutusaus I.,Valenziano L.,Vassallo T.,Verdoes Kleijn G.,Wang Y.,Weller J.,Zamorani G.,Zoubian J.,Scottez V.

Abstract

The material composition of asteroids is an essential piece of knowledge in the quest to understand the formation and evolution of the Solar System. Visual to near-infrared spectra or multiband photometry is required to constrain the material composition of asteroids, but we currently have such data, especially in the near-infrared wavelengths, for only a limited number of asteroids. This is a significant limitation considering the complex orbital structures of the asteroid populations. Up to 150 000 asteroids will be visible in the images of the upcoming ESA Euclid space telescope, and the instruments of Euclid will offer multiband visual to near-infrared photometry and slitless near-infrared spectra of these objects. Most of the asteroids will appear as streaks in the images. Due to the large number of images and asteroids, automated detection methods are needed. A non-machine-learning approach based on the Streak Det software was previously tested, but the results were not optimal for short and/or faint streaks. We set out to improve the capability to detect asteroid streaks in Euclid images by using deep learning. We built, trained, and tested a three-step machine-learning pipeline with simulated Euclid images. First, a convolutional neural network (CNN) detected streaks and their coordinates in full images, aiming to maximize the completeness (recall) of detections. Then, a recurrent neural network (RNN) merged snippets of long streaks detected in several parts by the CNN. Lastly, gradient-boosted trees (XGBoost) linked detected streaks between different Euclid exposures to reduce the number of false positives and improve the purity (precision) of the sample. The deep-learning pipeline surpasses the completeness and reaches a similar level of purity of a non-machine-learning pipeline based on the StreakDet software. Additionally, the deep-learning pipeline can detect asteroids 0.25–0.5 magnitudes fainter than StreakDet. The deep-learning pipeline could result in a 50% increase in the number of detected asteroids compared to the StreakDet software. There is still scope for further refinement, particularly in improving the accuracy of streak coordinates and enhancing the completeness of the final stage of the pipeline, which involves linking detections across multiple exposures.

Funder

Vilho, Yrjö, and Kalle Väisälä Foundation

Academy of Finland

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference50 articles.

1. Abadi M., Agarwal A., Barham P., et al. 2016, arxiv e-prints [arXiv: 1603.04467]

2. Agarap A. F. 2018, arXiv e-prints [arXiv:1803.08375]

3. Cosmology and fundamental physics with the Euclid satellite

4. Biewald L. 2020, Experiment Tracking with Weights and Biases, software available from https://wandb.ai/site/experiment-tracking

5. Solar system science with ESA Euclid

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3