DeepStreaks: identifying fast-moving objects in the Zwicky Transient Facility data with deep learning

Author:

Duev Dmitry A1ORCID,Mahabal Ashish1,Ye Quanzhi12,Tirumala Kushal3,Belicki Justin4,Dekany Richard4,Frederick Sara5,Graham Matthew J1ORCID,Laher Russ R2,Masci Frank J2,Prince Thomas A1ORCID,Riddle Reed4ORCID,Rosnet Philippe6,Soumagnac Maayane T7ORCID

Affiliation:

1. Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA

2. IPAC, California Institute of Technology, MS 100-22, Pasadena, CA 91125, USA

3. Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA

4. Caltech Optical Observatories, California Institute of Technology, Pasadena, CA 91125, USA

5. Department of Astronomy, University of Maryland, College Park, MD 20742, USA

6. Université Clermont Auvergne, CNRS/IN2P3, LPC, 63000 Clermont-Ferrand, France

7. Benoziyo Center for Astrophysics, Weizmann Institute of Science, 7610001 Rehovot, Israel

Abstract

ABSTRACT We present DeepStreaks, a convolutional-neural-network, deep-learning system designed to efficiently identify streaking fast-moving near-Earth objects that are detected in the data of the Zwicky Transient Facility (ZTF), a wide-field, time-domain survey using a dedicated 47 deg2 camera attached to the Samuel Oschin 48-inch Telescope at the Palomar Observatory in California, United States. The system demonstrates a 96–98 per cent true positive rate, depending on the night, while keeping the false positive rate below 1 per cent. The sensitivity of DeepStreaks is quantified by the performance on the test data sets as well as using known near-Earth objects observed by ZTF. The system is deployed and adapted for usage within the ZTF Solar system framework and has significantly reduced human involvement in the streak identification process, from several hours to typically under 10 min per day.

Funder

Heising-Simons Foundation

National Science Foundation

Weizmann Institute of Science

University of Maryland

University of Washington

Deutsches Elektronen-Synchrotron

University of Wisconsin-Milwaukee

University System of Taiwan

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3