Negative differential resistance in Si nanostructure: role of interface traps

Author:

Chakrabarty SudiptaORCID,Hossain Syed MinhazORCID

Abstract

Abstract Negative differential resistance (NDR) has been observed in I-V characteristics measured between two aluminum (Al) pads deposited on a layer containing Silicon nanostructures. This feature has been observed for suitable bias range and specific direction of voltage sweep. NDR has been found to show up within a specific range of lower and upper threshold voltages for each of the samples studied in this work. The amount of NDR has been found to depend on voltage scan rate and bias range. The observed phenomena have been explained using the dynamics of charge trapping and detrapping at the surface/interface defect states present at the boundary of the nanostructured silicon and the oxide layer. An equivalent circuit designed by incorporation of suitable resistance and capacitance representing the trap assisted charge transport within the aluminum-Silicon nanostructure junctions has produced similar I-V characteristics as obtained in the experimental results. Repeatability of NDR shows the potential of the device to be used in oscillators.

Funder

INSPIRE

DST

the Department of Science and Technology (DST), Government of India

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3