Abstract
Abstract
In order to study the recently proposed strategy to tailor the electrical property of ceramics by the introduction of dislocations, numerical calculations are performed on the influence of parallel straight dislocations on ionic conductivity and dendrite formation in single-crystal solid electrolytes. If the diameter of a dislocation pipe is more than √2 times larger than the distance between neighboring dislocations, the ionic current density is nearly uniform on the electrode and the dendrite formation would be avoided. Furthermore, under the condition, the mean ionic conductivity is higher than that without dislocations by several orders of magnitude. It may be practically possible to increase the ionic conductivity by several orders of magnitude without dendrite formation by introducing appropriate dislocations because the required dislocation density in the order of 1017 m−2 has already been reported experimentally although the reports were not for metal oxides.
Subject
Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献