Micro-features of ambipolar snapback behaviour under high current injection to design capacitorless memory device

Author:

Singh PragatiORCID,Dhar Rudra SankarORCID,Baishya Srimanta

Abstract

Abstract This paper presents micro-features of capacitorless memory cells based on snapback phenomenon and modeling of space-charges. 2—Dimensional gate grounded NMOS structure is specified and its operational window of the memory cell is inspected using the Synopsys TCAD tool. This work examines snapback behaviour in one transistor DRAM memory cell in the absence of a storage capacitor under zero gate bias and applied ramp of high current at the drain terminal. Carrier electrostatics and memory cell mechanisms are also explored by adjusting the slope of the high current ramp. The process variation is examined for different parameters in the device. The current crowding phenomenon due to the injection of electrons and holes is investigated, giving rise to ambipolar behaviour. Due to the snapback, redistribution of electron and hole current is investigated. This work also evaluates the impact on electrostatic potential along channel and bulk under the snapback. It explains the dependency of snapback on potential build-up. Post-snapback electron current flipping presents the flow line near the gate region. The bipolar activity is manifested in surface and bulk regions to show its impact through analytics. The effect of gate biasing is also examined under the applied current ramp.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3