Abstract
Abstract
To effectively regulate thermal transport for the near-junction thermal management of GaN electronics, it is imperative to gain an understanding of the phonon characteristics of GaN nanostructures, particularly the topological phonon properties connected to low-dissipation surface phonon states. In this work, a comprehensive study on phonon modes and topological phonon properties is performed from first principles in (GaN)
x
/(AlN)
x
and (AlGaN)
x
/(GaN)
x
(x = 1,2,3) superlattices. Phonon modes, including the dispersion relation, density of states, and participation ratio, were calculated for six GaN superlattices. The participation ratio results did not reveal the localized phonon mode. In topological phonon analyses, it is found that Weyl phonons with a Chern number of 1(−1) are present in all six GaN superlattices, consisting of trivial (GaN) and nontrivial (AlN and AlGaN) combinations. These phonons are located on either side of the k
z
= 0 plane symmetrically in the Brillouin zone. With the increase in the number of phonon branches in superlattices, the number of Weyl phonon points also increases from dozens to hundreds. One Weyl phonon with significant and clean surface states is selected and analyzed for each GaN superlattice. Among them, the Weyl phonon in (GaN)2/(AlN)2 superlattice mainly results from the lattice vibrations of Al and Ga atoms, while the Weyl phonons in other superlattices mainly result from the lattice vibrations of N atoms. The Weyl phonons at opposite k
z
planes form pairs in (GaN)2/(AlN)2, AlGaN/GaN, and (AlGaN)2/(GaN)2. Effects of strain including biaxial and uniaxial strain on Weyl phonons in GaN/AlN and AlGaN/GaN superlattices are investigated. Results indicate that Weyl phonons persist in large strain states, however, no monoclinic trend is observed due to the accidental degeneracy of these superlattices. The investigation in this work is promising to provide a deeper understanding of phonon properties and the topological effects of phonons in GaN nanostructures.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Jiangsu Funding Program for Excellent Postdoctoral Talent
Subject
Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献