Abstract
Abstract
We theoretically show that an interface formed by a three-dimensional Dirac/magnetic Weyl semimetal deflects the propagation direction of hitting Weyl fermions according to their Chirality in opposite directions. This effect leads to a Chirality current that flows parallel to the interface. There is an imbalance between the Chirality of Weyl fermions in this current whereas it does not carry any charge. Also, this phenomenon creates an indirect gap in the charge conductance that pass through the circuit. Unlike real spin, Chirality remains a good quantum number in systems characterized by very strong spin-momentum coupling. We derive a continuity equation for the Chirality density wave to elucidate how magnetization alters its dynamics and relates to the transverse Chirality current. Furthermore, we demonstrate a torque, that we called it Chirality transfer torque, imposes on the junction that its value relates to the transverse Chirality current.