ZnO-based scintillating bolometers: new prospects to study double beta decay of 64Zn

Author:

Armatol A.,Broerman B.,Dumoulin L.,Giuliani A.,Khalife H.,Laubenstein M.,Loaiza P.,de Marcillac P.,Marnieros S.,Nagorny S.S.,Nisi S.,Nones C.,Olivieri E.,Pagnanini L.,Pirro S.,Poda D.V.,Scarpaci J.A.,Zolotarova A.S.

Abstract

Abstract The first detailed study on the performance of a ZnO-based cryogenic scintillating bolometer as a detector to search for rare processes in zinc isotopes was carried out. A 7.2 g ZnO low-temperature detector, containing more than 80% of zinc in its mass, exhibits good energy resolution of baseline noise 1.0–2.7 keV FWHM at various working temperatures resulting in a low-energy threshold for the experiment, 2.0–6.0 keV. The light yield for β/γ events was measured as 1.5(3) keV/MeV, while it varies for α particles in the range of 0.2–3.0 keV/MeV. The detector demonstrates an effective identification of β/γ events from α events using time-properties of only heat signals. The radiopurity of the ZnO crystal was evaluated using the Inductively Coupled Plasma Mass Spectrometry, an ultra-low-background High Purity Ge  γ-spectrometer, and bolometric measurements. Only limits were set at the level of 𝒪(1–100) mBq/kg on activities of  40K, 137Cs and daughter nuclides from the U/Th natural decay chains. The total internal α-activity was measured as 22(2) mBq/kg, with a major contribution caused by 6(1) mBq/kg of 232Th and 12(2) mBq/kg of  234U. Limits on double beta decay (DBD) processes in ^64Zn and 70Zn isotopes were set on the level of 𝒪(1017–1018) yr for various decay modes, profiting from 271 h of acquired background data in the above-ground lab. This study shows a good potential for ZnO-based scintillating bolometers to search for DBD processes of Zn isotopes, especially in 64Zn, with the most prominent spectral features at ∼ 10–20 keV, like the two-neutrino double electron capture. A 10 kg-scale experiment can reach the experimental sensitivity at the level of  𝒪(1024) yr.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Reference99 articles.

1. Review of Particle Physics;Workman;PTEP,2022

2. Toward the discovery of matter creation with neutrinoless ββ decay;Agostini;Rev. Mod. Phys.,2023

3. Neutrinoless Double-Beta Decay: Status and Prospects;Dolinski;Ann. Rev. Nucl. Part. Sci.,2019

4. Double Beta Decay APPEC Committee Report;Giuliani,2019

5. Search for the Majorana Nature of Neutrinos in the Inverted Mass Ordering Region with KamLAND-Zen;Abe;Phys. Rev. Lett.,2023

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3