CUTE: A Cryogenic Underground TEst facility at SNOLAB

Author:

Camus Philippe,Corbett Jonathan,Crawford Sean,Dering Koby,Fascione Eleanor,Gerbier Gilles,Germond Richard,Ghaith Muad,Hall Jeter,Hong Ziqing,Kubik Andrew,Mayer Adam,Nagorny Serge,Pakarha Payam,Rau Wolfgang,Scorza Silvia,Underwood Ryan

Abstract

Low-temperature cryogenics open the door for a range of interesting technologies based on features like superconductivity and superfluidity, low-temperature phase transitions or the low heat capacity of non-metals in the milli-Kelvin range. Devices based on these technologies are often sensitive to small energy depositions as can be caused by environmental radiation. The Cryogenic Underground TEst facility (CUTE) at SNOLAB is a platform for testing and operating cryogenic devices in an environment with low levels of background. The large experimental chamber (O(10) L) reaches a base temperature of ∼ 12 mK; it can hold a payload of up to ∼ 20 kg and provides a radiogenic background event rate as low as a few events/kg/keV/day in the energy range below about 100 keV, as well as a negligible muon rate (O1)/month). CUTE was designed and built in the context of the Super Cryogenic Dark Matter Search experiment (SuperCDMS) that uses cryogenic detectors to search for interactions of dark matter particles with ordinary matter. The facility has been used to test SuperCDMS detectors since its commissioning in 2019. In 2021, it was handed over to SNOLAB to become a SNOLAB user facility after the completion of the testing of detectors for SuperCDMS. The facility will be available for projects that benefit from these special conditions, based on proposals assessed for their scientific and technological merits. This article describes the main design features and operating parameters of CUTE.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3