Flow turning effect and laminar control by the 3D curvature of leading edge serrations from owl wing

Author:

Muthuramalingam MuthukumarORCID,Talboys Edward,Wagner Hermann,Bruecker ChristophORCID

Abstract

Abstract This work describes a novel mechanism of laminar flow control of straight and backward swept wings with a comb-like leading edge (LE) device. It is inspired by the LE comb on owl feathers and the special design of its barbs, resembling a cascade of complex 3D-curved thin finlets. The details of the geometry of the barbs from an owl feather were used to design a generic model of the comb for experimental and numerical flow studies with the comb attached to the LE of a flat plate. Due to the owls demonstrating a backward sweep of the wing during gliding and flapping from live recordings, our examinations have also been carried out at differing sweep angles. The results demonstrate a flow turning effect in the boundary layer inboards, which extends downstream in the chordwise direction over distances of multiples of the barb lengths. The inboard flow-turning effect described here, counter-acts the outboard directed cross-span flow typically appearing for backward swept wings. This flow turning behaviour is also shown on SD7003 airfoil using precursory LES investigations. From recent theoretical studies on a swept wing, such a way of turning the flow in the boundary layer is known to attenuate crossflow instabilities and delay transition. A comparison of the comb-induced cross-span velocity profiles with those proven to delay laminar to turbulent transition in theory shows excellent agreement, which supports the laminar flow control hypothesis. Thus, the observed effect is expected to delay transition in owl flight, contributing to a more silent flight.

Funder

Royal Academy of Engineering

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

Reference37 articles.

1. Morphological variations of leading-edge serrations in owls (Strigiformes);Weger;PloS One,2016

2. The silent flight of owls;Graham;J. R. Aeronaut. Soc.,1934

3. A study of the silent flight of the owl;Lilley,1998

4. Morphologische und funktionelle untersuchungen über den ‘lautlosen’ flug der eulen (strix aluco) im vergleich zum flug der enten (anas platyrhynchos);Neuhaus;Biol. Zentralbl.,1973

5. Experimental study of airfoil leading edge combs for turbulence interaction noise reduction;Geyer;Acoustics,2020

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3