Experimental Study of Airfoil Leading Edge Combs for Turbulence Interaction Noise Reduction

Author:

Geyer Thomas,Wasala Sahan,Sarradj EnnesORCID

Abstract

The interaction of a turbulent flow with the leading edge of a blade is a main noise source mechanism for fans and wind turbines. Motivated by the silent flight of owls, the present paper describes an experimental study performed to explore the noise-reducing effect of comb-like extensions, which are fixed to the leading edge of a low-speed airfoil. The measurements took place in an aeroacoustic wind tunnel using the microphone array technique, while the aerodynamic performance of the modified airfoils was captured simultaneously. It was found that the comb structures lead to a noise reduction at low frequencies, while the noise at high frequencies slightly increases. The most likely reasons for this frequency shift are that the teeth of the combs break up large incoming turbulent eddies into smaller ones or that they shift turbulent eddies away from the airfoil surface, thereby reducing pressure fluctuations acting on the airfoil. The aerodynamic performance does not change significantly.

Publisher

MDPI AG

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3