Aerodynamic Noise Reduction Based on Bionic Blades with Non-Smooth Leading Edges and Curved Serrated Trailing Edges

Author:

Abstract

The flight of the owl is silent owing to non-smooth leading edges of the owl’s wings and the curved serration of the feathers. This study applied this concept of bionics to blade design for horizontal axis wind turbines to reduce aerodynamic noise. The flow and sound field distribution around a rotating wind turbine with three blades were investigated. A numerical simulation method that combines large eddy simulation (LES) and FW-H acoustic equation was adopted to compare aerodynamic noise between the blade prototype and the bionic blade. The comparison revealed that the sound pressure level of the bionic blade was reduced over middle and high frequencies, thereby achieving a noise reduction of 6.9 dB. The intensity of the wake vortex shedding of the bionic blade was lower, and the interaction between the shedding vortices in the bionic blade was smaller compared with that in the prototype blade, indicating that the aerodynamic noise induced by the shedding vortex was effectively reduced.

Publisher

Academic World Research

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3