Randomness in appendage coordination facilitates strenuous ground self-righting

Author:

Xuan QihanORCID,Li ChenORCID

Abstract

Abstract Randomness is common in biological and artificial systems, resulting either from stochasticity of the environment or noise in organisms or devices themselves. In locomotor control, randomness is typically considered a nuisance. For example, during dynamic walking, randomness in stochastic terrain leads to metastable dynamics, which must be mitigated to stabilize the system around limit cycles. Here, we studied whether randomness in motion is beneficial for strenuous locomotor tasks. Our study used robotic simulation modeling of strenuous, leg-assisted, winged ground self-righting observed in cockroaches, in which unusually large randomness in wing and leg motions is present. We developed a simplified simulation robot capable of generating similar self-righting behavior and varied the randomness level in wing–leg coordination. During each wing opening attempt, the more randomness added to the time delay between wing opening and leg swinging, the more likely it was for the naive robot (which did not know what coordination is best) to self-right within a finite time. Wing–leg coordination, measured by the phase between wing and leg oscillations, had a crucial impact on self-righting outcome. Without randomness, periodic wing and leg oscillations often limited the system to visit a few bad phases, leading to failure to escape from the metastable state. With randomness, the system explored phases thoroughly and had a better chance of encountering good phases to self-right. Our study complements previous work by demonstrating that randomness helps destabilize locomotor systems from being trapped in undesired metastable states, a situation common in strenuous locomotion.

Funder

Army Research Office

Burroughs Wellcome Fund

Johns Hopkins University

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3