How spotted lanternflies get back on their feet: 3D mechanical modeling explains terrestrial self-righting strategies

Author:

Bien Theodore,Alexander Benjamin,Li Chengpei,Goeler-Slough Natalie,Hsieh S. Tonia,Kane Suzanne AmadorORCID

Abstract

AbstractThe ability to upright quickly and efficiently when overturned on the ground (terrestrial self-righting) is crucial for living organisms and robots. The emerging field of terradynamics seeks to understand how and why different animals use diverse self-righting strategies. We studied this behavior using high speed multiangle video in nymphs of the invasive spotted lanternfly (SLF,Lycorma delicatula), an insect that must frequently recover from falling in its native habitat. While most insect species previously studied can use wing opening to facilitate overturning, nymphs, like most robots, are wingless. SLFs were highly successful at self-righting (>92% of trials) with no significant difference in the time or number of attempts required for three substrates with varying friction and roughness. These nymphs seldom overturned using the pitching and rolling strategies observed for other insect species, instead primarily flipping upright by rotating around a diagonal body axis. To understand these motions, we used video, photogrammetry and Blender rendering software to create novel, highly realistic 3D models of SLF body poses during each strategy. These models were analyzed using the energy landscape theory of self-righting, which posits that animals use methods that minimize energy barriers to overturning, and inertial morphing, which proposes the animal adjusts its body pose to minimize the rotational inertia during overturning, a theory which has not been applied to self-righting. A combination of both theories was found to explain the observed preferred strategies of this species, indicating the value of using 3D renderings with mechanical modeling for terradynamics and biomimetic applications.Summary statementMany animals and robots need to upright quickly when overturned. This study uses 3D models and high-speed video to explain how the invasive spotted lanternfly self-rights effectively on different surfaces.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3